A What-and-Where fusion neural network for recognition and tracking of multiple radar emitters
نویسندگان
چکیده
A neural network recognition and tracking system is proposed for classification of radar pulses in autonomous Electronic Support Measure systems. Radar type information is considered with position-specific information from active emitters in a scene. Type-specific parameters of the input pulse stream are fed to a neural network classifier trained on samples of data collected in the field. Meanwhile, a clustering algorithm is used to separate pulses from different emitters according to position-specific parameters of the input pulse stream. Classifier responses corresponding to different emitters are separated into tracks, or trajectories, one per active emitter, allowing for more accurate identification of radar types based on multiple views of emitter data along each emitter trajectory. Such a What-and-Where fusion strategy is motivated by a similar subdivision of labor in the brain. The fuzzy ARTMAP neural network is used to classify streams of pulses according to radar type using their functional parameters. Simulation results obtained with a radar pulse data set indicate that fuzzy ARTMAP compares favorably to several other approaches when performance is measured in terms of accuracy and computational complexity. Incorporation into fuzzy ARTMAP of negative match tracking (from ARTMAP-IC) facilitated convergence during training with this data set. Other modifications improved classification of data that include missing input pattern components and missing training classes. Fuzzy ARTMAP was combined with a bank of Kalman filters to group pulses transmitted from different emitters based on their position-specific parameters, and with a module to accumulate evidence from fuzzy ARTMAP responses corresponding to the track defined for each emitter. Simulation results demonstrate that the system provides a high level of performance on complex, incomplete and overlapping radar data.
منابع مشابه
Radar Esm with a What-and-where Fusion Neural Network
A neural network recognition and tracking system is proposed for classification of radar pulses in autonomous Electronic Support Measure systems. Radar type information is combined with position-specific information from active emitters in a scene. Such a What-and-Where fusion strategy is motivated by a similar subdivision of labor in the brain.
متن کاملConvolutional Gating Network for Object Tracking
Object tracking through multiple cameras is a popular research topic in security and surveillance systems especially when human objects are the target. However, occlusion is one of the challenging problems for the tracking process. This paper proposes a multiple-camera-based cooperative tracking method to overcome the occlusion problem. The paper presents a new model for combining convolutiona...
متن کاملA New Algorithm for the Deinterleaving of Radar Pulses
This paper presents a new algorithm for the deinterleaving of radar signals, based on the direction of arrival (DOA), carrier frequency (RF), and time of arrival (TOA). The algorithm is applied to classic (constant), jitter, staggered, and dwell switch pulse repetition interval (PRI) signals. This algorithm consists of two stages. In the first stage, a Kohonen neural network clusters the receiv...
متن کاملAdaptive Fusion of Inertial Navigation System and Tracking Radar Data
Against the range-dependent accuracy of the tracking radar measurements including range, elevation and bearing angles, a new hybrid adaptive Kalman filter is proposed to enhance the performance of the radar aided strapdown inertial navigation system (INS/Radar). This filter involves the concept of residual-based adaptive estimation and adaptive fading Kalman filter and tunes dynamically the fil...
متن کاملAdaptive Neural Network Method for Consensus Tracking of High-Order Mimo Nonlinear Multi-Agent Systems
This paper is concerned with the consensus tracking problem of high order MIMO nonlinear multi-agent systems. The agents must follow a leader node in presence of unknown dynamics and uncertain external disturbances. The communication network topology of agents is assumed to be a fixed undirected graph. A distributed adaptive control method is proposed to solve the consensus problem utilizing re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neural networks : the official journal of the International Neural Network Society
دوره 14 3 شماره
صفحات -
تاریخ انتشار 2001